FIMS/CAIS RPV Models

Replacement Plant Value (RPV) Models

Standard Models (35)			
Model \#	Model Name	Model \#	Model Name
E1	Housing - Small	E19	Parking - Below Ground
E2	Housing - Large	E20	Swimming Pool
E3	Auditorium/Meeting	E21	Post Office/Mail Handling
E4	Cafeteria/Dining Facility	E22	Gymnasium
E5	Classroom-Small	E23	Retail Store
E6	Classroom-Medium	E24	Security/Badging
E7	Fire Station	E25	Warehouse/Storage
E8	Garage, Repair	E26	Bank/Credit Union
E9	Hangar - Service Building	E27	Visitor Center
E10	Indoor Firing Range	E28	Office One Story
E11	Laboratory - Office	E29	Warehouse, Mini
E12	Laundry	E31	College, Dormitory, 2-3 Story
E13	Library	E33	Lodge/Guest House
E14	Medical Facility/Clinic	E34	Apartment 1-3 Story
E15	Office-Small	E35	Apartment 4-7 Story
E16	Office-Medium	E37	Hotel 4-7 Story
E17	Office-Large	E39	Telephone Exchange
E18	Parking - Above Ground		

Custom Models (66)

Model \#	Model Name	Model \#	Model Name
N1	Bunkers/Magazines	N46	Building Sewage Treatment Plant
N2	Communication - Telephone Center	N50	Office Trailer - Mobile
N3	Computer Center	N51	Office Trailer - Single Wide
N4	Day Care Center	N52	Office Trailer - Double Wide
N5	Explosives Handling	N53	Office Trailer - Multiple 4 units
N6	Hardened Storage	N54	Office Trailer - 20,000SF
N7	High Bay Facility	N55	Fire Station 2 Story
N8	Labs-Hard Engineered (80/20)	N56	Metal Building - Shop 1,200SF
N9	Labs-Biology Environmental (80/20)	N57	Metal Building - Shop 36,000SF
N10	Labs-Chemistry (80/20)	N58	Metal Building - Shop 60,000SF
N11	Labs-Physics/Computer (80/20)	N59	Metal Building - Office 20,000
N12	Labs-Test/Blast (80/20)	N60	Metal Building - Office 40,000
N13	Machine Shop	N61	Metal Building - Car Port
N14	Maintenance Shops	N62	Personnel Gate Turnstile
N15	Paint Shop	N63	Metal Covered Walkways
N16	Process Building with Pool	N64	Lift Station Small
N17	Process Building-Small	N65	Lift Station Large
N18	Process Building-Large	N66	Substation Small
N19	Records Storage/Vault	N67	Substation Large
N21	Labs-Hard Engineered (50/50)	N68	Office Cast In Place Concrete 2 Story
N22	Labs-Biology Environmental (50/50)	N69	Office Cast In Place Concrete 4 Story
N23	Labs-Chemistry (50/50)	N70	Shop Cast In Place Concrete 24,000SF
N24	Labs- Physics/Computer (50/50)	N71	Shop Cast In Place Concrete 42,000SF
N25	Labs-Test/Blast (50/50)	N73	Shaft with Elevator System
N30	Office with Atrium	N74	Tunnel Nevada Drift
N31	Labs - High Radiation Examination	N75	Underground Building
N32	Multi-Purpose Facility - Large	N76	Guard Shack Metal
N33	Real Property Trailer	N77	Guard Shack Precast
N34	Accelerator - Ring	N78	Shed 300SF Open
N35	Pumping Stations	N79	Shed 300SF Open, Electricity
N36	Special Nuclear Materials Component Facility	N80	Shed 840SF Open
N37	Assembly Cell	N81	Shed 840SF Open, Electricity
N38	High Explosives Subassembly	N82	Shed 300SF Enclosed

N39	High Explosives Machining Facility	$\mathbf{N 8 3}$	Shed 300SF Enclosed, Electricity
N40	Chilled Water Plant- 9,000T Centrifugal	$\mathbf{N 8 4}$	Shed 840SF Enclosed
N41	Chilled Water Plant- 9,960T Absorption	$\mathbf{N 8 5}$	Shed 840SF Enclosed, Electricity
N42	Building Steam Power Plant	$\mathbf{N 8 6}$	Guard Tower Metal
N43	Steam Plant - Coal	$\mathbf{N 8 7}$	Guard Tower Precast
N44	Steam Plant - Gas	$\mathbf{N 8 8}$	High Security Nuclear Facility
N45	Steam Plant - Oil		

Model Descriptions

del	Model Name		scription
E1	Housing - Small	This model should be applied to small residential uses such as a house or small apartment. The model is based on a small 3-story apartment building with 8,000 square feet of floor area. The structure is light wood frame, with vinyl siding exterior, asphalt shingle roof, and packaged HVAC units.	
		Perimeter (LF): 213	Location: National Average
		Gross Sqft: 8,000	Floor Height (LF): 10
		No of Floors: 3	
E2	Housing - Large	This model should be applied to large residential uses such as a large apartments and dormitories. The model is based on a large 6-story apartment building with 45,000 square feet of floor area. The structure is light steel frame, with brick veneer exterior, built-up membrane roof, and packaged HVAC units.	
		Perimeter (LF): 400	Location: National Average
		Gross Sqft: 45,000	Floor Height (LF): 10
		No of Floors: 6	
E3	Auditorium/Meeting	This model should be applied to uses such as meeting facilities and auditoriums. The model is based on a 1 -story building with 24,000 square feet of floor area. The structure is light steel frame, with brick veneer and CMU backup exterior, built-up membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 640	Location: National Average
		Gross Sqft: 24,000	Floor Height (LF): 24
		No of Floors: 1	
E4	Cafeteria/Dining Facility	This model should be applied to uses such as cafeteria and dining facilities. The model is based on a 1-story building with 8,000 square feet of floor a rea. The structure is light steel frame, with brick veneer and CMU backup exterior, single-ply membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 368	Location: National Average
		Gross Sqft: 8,000	Floor Height (LF): 12
		No of Floors: 1	

Model No.	Model Name	Model Description
E5	Classroom -Small	This model should be applied to uses such as small size classroom and training facilities. The model is based on a 1-story building with 45,000 square feet of floor area. The structure is steel frame, with brick veneer and CMU backup exterior, built-up membrane roof, and roof-top HVAC units and central air system.
		Perimeter (LF): 922 Location: National Average
		Gross Sqft: 45,000 \quad Floor Height (LF): 12
		No of Floors: 1
E6	Classroom - Medium	This model should be applied to uses such as medium size class room and training facilities. The model is based on a 2 -story building with 110,000 square feet of floor area. The structure is steel frame, with brick veneer and CMU backup exterior, built-up membrane roof, and roof-top HVAC units and central air system.
		Perimeter (LF): 1,890 Location: National Average
		Gross Sqft: 110,000
		No of Floors: 2
E7	Fire Station	This model should be applied to all fire station facilities. The model is based on a 1 -story building with 8,000 square feet of floor area. The structure is steel frame, with decorative block exterior, built-up membrane roof, and roof-top HVAC units and central airsystem.
		Perimeter (LF):386 \quad Location: National Average
		Gross Sqft: 8,000 Floor Height (LF): 14
		No of Floors: 1
E8	Garage, Repair	This model should be applied to vehicle repair type uses and facilities. The model is based on a 1 -story building with 10,000 square feet of floor area. The structure is masonry bearing wall with steel joist, with painted concrete block exterior, built-up membrane roof, and roof-top HVAC units and central air system.
		Perimeter (LF): $500 \times$ Location: National Average
		Gross Sqft: 10,000
		No of Floors: 1
E9	Hangar - Service Building	This model should be applied to hanger type uses and large clear-span open area facilities. The model is based on a 1 -story building with 20,000 square feet of floor area. The structure is steel frame, withgalvanized steel siding exterior, single-ply membrane roof, and unit heaters.
		Perimeter (LF): $580 \mathrm{Location:} \mathrm{National} \mathrm{Average}$
		Gross Sqft: 20,000
		No of Floors: 1

Model No.	Model Name		scription
E31	College, Dormitory, 2-3 story	This model should be applied to residential use as dormitories. The model is based on a 3 -story building with 25,000 square feet of floor area and 12' story height. The structure is face brick with concrete block backup with a rigid concrete frame and roof-top HVAC units and central air system.	
		Perimeter (LF): 400	Location: National Average
		Gross Sqft: 25,000	Floor Height (LF): 12
		No of Floors: 3	
E33	Lodge/Guest House	This model should be applied to residential use as a lodge or guest houses. The model is based on a 2-story building with 10,000 square feet of floor area and 10' story height. The structure is a wood frame with cedar beveled siding.	
		Perimeter (LF): 300	Location: National Average
		Gross Sqft: 10,000	Floor Height (LF): 10
		No of Floors: 2	
E34	Apartment 1-3 Story	This model should be applied to residential use as small a partment building. The model is based on a 3 -story building with 22,500 square feet of floor area and 10' story height. The structure is face brick with concrete block back-up with steel joists and chilled water, air cooled condenser system.	
		Perimeter (LF): 400	Location: National Average
		Gross Sqft: 22,500	Floor Height (LF): 10
		No of Floors: 3	
E35	Apartment 4-7 Story	This model should be applied to residential use as a medium apartment building. The model is based on a 6 -story building with 60,000 square feet of floor area and 10 '-4" story height. The structure is face brick with concrete block back-up with steeljoists a nd chilled water, aircooled condenser system.	
		Perimeter (LF): 500	Location: National Average
		Gross Sqft: 60,000	Floor Height (LF): 10
		No of Floors: 6	
E37	Hotel 4-7 Story	This model should be applied for use as a small hotel or similar facility. The model is based on a 6-story building with 135,000 square feet of floor area and 10 ' story height. The structure is face brick with concrete block back-up and a steel frame and oil fired hot water boiler, wall fin Radiationiation and chilled water fan coiled units.	
		Perimeter (LF): 500	Location: National Average
		Gross Sqft: 60,000	Floor Height (LF): 10
		No of Floors: 6	

Model No.	Model Name	Model Description
N15	Paint Shop	This model should be applied to all paint shop and support type facilities with paint booths. The model is based on a 1 -story building with 20,000 square feet of floor area. The structure is steel frame, with metal siding exterior, metal roof, and unit heaters and packaged $A C$ units.
		Perimeter (LF): $600 \mathrm{Location:} \mathrm{National} \mathrm{Average}$
		Gross Sqft: 20,000 \quad Floor Height (LF): 14
		No of Floors: 1
N16	Process Building with Pool	This model should be applied to all process facilities with cooling ponds for roof storage. The model is based on a 1 -story building with 125,000 square feet of floor area. The structure is cast-in-place concrete, with brick veneer with CMU backup exterior, built-up membrane roof, and a boiler/chiller mechanical system.
		Perimeter (LF): 1,650 \quad Location: National Average
		Gross Sqft: 125,000
		No of Floors: 1
N17	Process Building-Small	This model should be applied to all manufacturing and factory type facilities in the size range less than 250,000 SF. The model is based on a 1 -story building with 250,000 square feet of floor area. The structure is tilt-up concrete, with tilt-up concrete exterior, built-up membrane roof, and a boiler/chiller mechanical system.
		Perimeter (LF): 2,900 \quad Location: National Average
		Gross Sqft: 250,000
		No of Floors: 1
N18	Process Building-Large	This model should be applied to all manufacturing and factory type facilities in the size range of $250,000-750,000$ SF. The model is based on a 1 -story building with 750,000 square feet of floor area. The structure is tilt-up concrete, with tilt-up concrete exterior, built-up membrane roof, and a boiler/chiller mechanical system.
		Perimeter (LF): 4,550 \quad Location: National Average
		Gross Sqft: 750,000 \quad Floor Height (LF): 14
		No of Floors: 1
N19	Records Storage/Vault	This model should be applied to all records storage type facilities with climate controlled space. The model is based on a 2 -story building with 150,000 square feet of floor area. The structure is cast-in-place concrete, with brick veneer with CMU backup exterior, single-ply membrane roof, and roof-top HVAC units and central airsystem.
		Perimeter (LF): 1,150 \quad Location: National Average
		Gross Sqft: 150,000 \quad Floor Height (LF): 20
		No of Floors: 2

Model No.	Model Name		scription
N21	Lab - Hard Engineered (50/50)	This model should be applied to laboratories used for construction and testing of equipment and is based on 50% lab space and 50% office. The model is based on a 3 -story building with 100,000 square feet of floor area. The structure is steel frame, with precast concrete exterior, built-up membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 900	Location: National Average
		Gross Sqft: 100,000	Floor Height (LF): 12
		No of Floors: 3	
N22	$\begin{aligned} & \text { Labs - Biology } \\ & \text { Environmental (} 50 / 50 \text {) } \end{aligned}$	This model should be applied to laboratories used for biology and environmental research and is based on 50% lab space and 50% office. The model is based on a 3 -story building with 60,000 square feet of floor area. The structure is steel frame, with precast concrete exterior, built-up membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 600 Location: National Average	
		Gross Sqft: 60,000	Floor Height (LF): 15
		No of Floors: 3	
N23	Lab - Chemistry (50/50)	This model should be applied to laboratories used for chemistry research and is based on 50% lab space and 50% office. The model is based on a 3story building with 60,000 square feet of floor area. The structure is steel frame, with precast concrete exterior, built-up membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 600	Location: National Average
		Gross Sqft: 60,000	Floor Height (LF): 15
		No of Floors: 3	
N24	Labs - Physics/Computer (50/50)	This model should be applied to laboratories used for physics and computer research and is based on 50% lab space and 50% office. The model is based on a 4 -story building with 80,000 square feet of floor area. The structure is steel frame, with precast concrete exterior, built-up membrane roof, and roof-top HVAC units and central airsystem.	
		Perimeter (LF): 600	Location: National Average
		Gross Sqft: 80,000	Floor Height (LF): 15
		No of Floors: 4	
N25	Labs - Test/Blast (50/50)	This model should be applied to laboratories used for heavy testing and explosive blast testing research and is based on 50% lab space and 50% office. The model is based on a 3 -story building with 60,000 square feet of floor area. The structure is steel frame, with precast concrete exterior, builtup membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 600	Location: National Average
		Gross Sqft: 60,000	Floor Height (LF): 17
		No of Floors: 3	

del No.	Model Name	Model Description
N33	Real Property Trailer	The Trailer estimate includes the purchase and installation of a $10^{\prime} \times 50^{\prime}$ construction office trailer. Attached to the trailer are two 10' x 10' entry platforms and stairs. The trailer installation includes a perimeter skirt, power, grounding, fire alarm and sprinklers.
		Perimeter (LF): $120 \times$ Location: National Average
		Gross Sqft: 500 Floor Height (LF): 8
		No of Floors: 1
N34	Accelerator - Ring	The estimate includes General Contractor work for providing site, concrete, waterproofing, mechanical \& electrical work for a continuous electron beam accelerator tunnel and supporting stairways. The tunnel is essentially a continual concrete box approximately 4300 LF long with interior dimensions of 14 ' wide by 10 ' high. Dimension vary at access building and stairways. Elevated and slab on gRadiationes vary from 2'-0" to 4'-0" thick. Six access stair locations arealso included.
		Perimeter (LF): 4,300 \quad Location: National Average
		Gross Sqft: 92,400
		No of Floors: 1
N35	Pumping Stations	This model should be applied to an 8.1 MGD pump station. The pump station's intakes water from a reservoirand transfers to a municipal system. The model is based on a 2 -story building with 3024 square feet of floor area. The first story is constructed of thickened concrete walls and slabs that support the intake and pump room. The second floor is enclosed in a prefabricated steel building. The second floor supports mechanical \& electrical equipment along with an office and support areas.
		Perimeter (LF): 220 Location: National Average
		Gross Sqft: 3,024
		No of Floors: 2
N36	Special Nuclear Materials Component Facility	The Special NuclearMaterialss Component Staging Facility is a 47,987 GSF cast-in-place concrete building. The perimeter is $1,041 \mathrm{LF}$ and the height varies from 27 ft to 11 ft . There is a partial firstfloor of $10,300 \mathrm{SF}$. The majority of the exterior wall is 24 " thick but there is a small area where it is 40 " thick. The interior partitions are a mix of CIP and drywall. The foundation is a 1'-3" concrete mat foundation. There is a low entrance link building comprised of industrial type siding and metal roofing (there is also a PH with the same construction). The finishes are a combination of exposed structure and ACT ceilings with resinous flooring and acoustical wall panels. Heat is brought into the building by existing HP steam service. There are 11AHU's, two packaged dehumidifiers, 11 FCU's and a 130 Ton reciprocating chiller. The building is fully sprinkled.
		Perimeter (LF): 1,041
		Gross Sqft: 47,987
		No of Floors: 1

Model No.	Model Name		scription
N37	Assembly Cell	This facility comprises of a central single story 27 ft wide corridor \& storage "spine" constructed with 12 " thick reinforced concrete retaining walls with counterforts and a steel roof deck with steel beam supports. Attached to this spine (two from the North and two from the south) are four single story reinforced concrete circular assembly cells each with a centenary roof beneath approximately 20 ft of fill. The cells have blastresistant entry doors. Each assembly cell contains the following reinforced concrete below gRadiatione support spaces; Mech room; tooling staging; SNM staging; corridor; inert parts staging; equipment airlock; personnel corridor. At each end of the spine is a prefabricated building with insulated metal siding approximately $58 f t$ long $x 40 f t$ wide containing the main mechanical and electrical rooms and an entrance ramp also constructed from a prefabricated structure approximately $56 \mathrm{ft} \times 17 \mathrm{ft}$.	
		Perimeter (LF): 2,575	Location: National Average
		Gross Sqft: 36,604	Floor Height (LF): 18
		No of Floors: 1	
N38	High Explosives Subassembly	Single story complex comprising a central reinforced blast-proof concrete core containing 15 assembly bays and one vacuum chamber which are separated by a blast proof sand filled containment area. The central core is buried under compacted earth fill with erosion control. This central core is ringed by a 16 ft wide service corridor constructed from structural steel framing with a metal panel exterior closure \& roofing system. The steel frame is specially reinforced at the entrance of each assembly bay to form a fragment shield. The entire structure is constructed off a nmat foundation. The facility is entered by a pre-fabricated ramp building.	
		Perimeter (LF): 1,521	Location: National Average
		Gross Sqft: 90,222	Floor Height (LF): 16
		No of Floors: 1	
N39	High Explosives Machining Facility	The HE Machining facility is a 49,600 GSF single story facility. The building is divided into the HE Machining facility ($23,500 \mathrm{GSF}$) and the adja cent support area ($26,100 \mathrm{GSF}$). The HE machining facility is comprised of eleven 600 SF lathe/milling rooms and one large equipment room. All the HE rooms are constructed of blast resistant concrete walls \& slabs. The rooms are separated from a HE corridor by blast resistant CIP concrete vestibules and blast resistant doors. Each lathe/milling room contains an exterior door protected with blast resistant exit mazes. The HE machining facility is constructed on a 48" thick mat slab. Support areas and HE corridor are on a 6 " slab. The HE corridor has a precastslab and beams. Support spaces are constructed of a CIP concrete deck with rib joists and concrete columns supported on caissons. The roof is a flat EPDM roof and the exteriors are EIFS finish on reinforced CIP concrete walls. Each lathe/milling room contains a full height removable access panel. Interior partitions are CMU or GWB partitions in the support areas and are blast resistant CIP concrete in the HE facility. There is 6,557 GSF prefab ramp building with metal siding and roofing.	
		Perimeter (LF): 1,033	Location: National Average
		Gross Sqft: 49,600	Floor Height (LF): 42
		No of Floors: 1	

Model No.	Model Name		scription
N40	Chilled Water Plant 9,000T Centrifugal	Plants used to produce centralized chilled water for installation-wide industrial processes or personal comfort cooling. The design of this model is based on a 9,000 Ton centrifugal chiller plant made up of 6-1500 Ton centrifugal chillers. The model is a 10,000 square foot 1 story building. The structure is steel frame, metal sandwiched exterior, with a metal roof.	
		Perimeter (LF): 450	Location: National Average
		Gross Sqft: 10,000	Floor Height (LF): 14
		No of Floors: 1	
N41	Chilled Water Plant 9,960T Absorption	Plants used to produce centralized chilled water for installation-wide industrial processes or personal comfort cooling. The design of this model is based on a 9,960 Ton steam absorption chiller plant made up of 6-1660 Ton steam absorption chillers. The model is a 10,000 square foot 1 story building. The structure is steel frame, metal sandwiched exterior, with a metal roof.	
		Perimeter (LF): 450	Location: National Average
		Gross Sqft: 10,000	Floor Height (LF): 14
		No of Floors: 1	
N42	Building Steam Power Plant	This model is a base design/shell structure for either a gas or oil fired steam plant. The model is a 4 story, 74,050 steel frame structure with metal siding. The basis of the shell is the N7 Height Bay facility. The user must add the appropriate number and size of the boilers to complete the design of the steam generating facility.	
		Perimeter (LF): 700	Location: National Average
		Gross Sqft: 74,050	Floor Height (LF): 18
		No of Floors: 4	
N43	Steam Plant-Coal	Coal-fired boilers used to produce steam or high temperature water for installation-wide distribution for industrial or personal comfort purposes. The model is a 4 story, 74,050 steel frame structure with metal siding. The basis of the shell is the N7 Height Bay facility. The model includes 250,000 $\mathrm{Lb} / \mathrm{Hr}$ boilers, coal handling systems, chemical treatment systems and all necessary controls and instrumentation.	
		Perimeter (LF): 700	Location: National Average
		Gross Sqft: 74,050	Floor Height (LF): 18
		No of Floors: 4	

Model No.	Model Name	Model Description
N44	Steam Plant-Gas	Gas-fired boilers used to produce steam or high temperature water for installation-wide distribution for industrial or personal comfort purposes. The model is a 4 story 74,050 , steel frame structure with metalsiding. The basis of the shell is the N7 Height Bay facility. The model includes 250,000 $\mathrm{Lb} / \mathrm{Hr}$ boilers, gas piping systems, chemical treatment systems and all necessary controls and instrumentation.
		Perimeter (LF): 700 \quad Location: National Average
		Gross Sqft: 74,050 \quad Floor Height (LF): 18
		No of Floors:4
N45	Steam Plant-Oil	Oil-fired boilers used to produce steam or high temperature water for installation-wide distribution for industrial or personal comfort purposes. The model is a 4 story, 74,050 steel frame structure with metal siding. The basis of the shell is the N7 Height Bay facility. The model includes 250,000 $\mathrm{Lb} / \mathrm{Hr}$ boilers, oil storage tanks, chemical treatment systems and all necessary controls and instrumentation.
		Perimeter (LF): 700 \quad Location: National Average
		Gross Sqft: 74,050 \quad Floor Height (LF): 18
		No of Floors:4
N46	Building Sewage Treatment Plant	This model is a generic design plant shell that can be used for primary, secondary and tertiary sewage treatment. The model must be modified to include the appropriate treatment equipment and building square footage, perimeter and story height. The model is a 1 story structure with metal siding.
		Perimeter (LF): 1,150 \quad Location: National Average
		Gross Sqft: 75,000 \quad Floor Height (LF): 14
		No of Floors: 1
N50	Office Trailer - Mobile	This model includes the purchase and installation of a $10^{\prime} \times 50^{\prime}$ construction office trailer. Attached to the trailer are two 10 x 10 ' entry platforms and stairs. The trailer installation includes a perimeter skirt, power, grounding, fire alarm and sprinklers and through the wall heat pumps.
		Perimeter (LF): $92 \times$ Location: National Average
		Gross Sqft:360 \quad Floor Height (LF): 8
		No of Floors: 1
N51	Office Trailer-Single Wide	This model includes the purchase and installation of a 10 ' x 50' modular office trailer. Attached to the trailer are two $10^{\prime} \times 10^{\prime}$ entry platforms and stairs. The installation includes a perimeter skirt, power, grounding, fire alarm and sprinklers and through the wall heat pumps.
		Perimeter (LF): 100 Location: National Average
		Gross Sqft:420 \quad Floor Height (LF): 8
		No of Floors: 1

Model No.	Model Name		scription
N68	Office Cast In Place Concrete 2 Story	This model should be applied to office facilities less than $36,000 \mathrm{SF}$. The model is based on a 2 -story building with 20,000 square feet of floor area. The structure is Cast in Place with precast wall panels, single-ply membrane roof, and roof-top HVAC units and centralair system.	
		Perimeter (LF): 400	Location: National Average
		Gross Sqft: 20,000	Floor Height (LF): 12
		No of Floors: 2	
N69	Office Cast In Place Concrete 4 Story	This model should be applied to office facilities less than $80,000 \mathrm{SF}$. The model is based on a 4 -story building with 40,000 square feet of floor area. The structure is Cast in Place with precast wall panels, single-ply membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 400	Location: National Average
		Gross Sqft: 40,000	Floor Height (LF): 12
		No of Floors: 4	
N70	Shop Cast In Place Concrete 24,000SF	This model should be applied to shop and support facilities less than 28,000 SF. The model is based on a 1 -story building with 24,000 square feet of floor area. The structure is Cast in Place with precast wall panels, single-ply membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 620	Location: National Average
		Gross Sqft: 24,000	Floor Height (LF): 16
		No of Floors: 1	
N71	Shop Cast In Place Concrete 42,000SF	This model should be applied to shop and support facilities less than 50,000 SF. The model is based on a 1 -story building with 42,000 square feet of floor area. The structure is Cast in Place with precast wall panels, single-ply membrane roof, and roof-top HVAC units and central air system.	
		Perimeter (LF): 820	Location: National Average
		Gross Sqft: 42,000	Floor Height (LF): 16
		No of Floors: 1	
N73	Shaft with Elevator System	This model should be applied to elevator shafts. The model is based on a 20 foot diameter shaft with ventilation.	
		Perimeter (LF): 78	Location: National Average
		Gross Sqft: 19,000	Floor Height (LF): 20
		No of Floors: 50	
N74	Tunnel Nevada Drift	This model should be applied to tunnel and drifts. The model is based on a 220,000 square feet of floor area. The structure is reinforced concrete. Ventilation provided via shaft and elevator system.	
		Perimeter (LF): 20,044	Location: National Average
		Gross Sqft: 220,000	Floor Height (LF): 17
		No of Floors: 1	

Model No.	Model Name		scription
N75	Underground Building	This model should be applied to office and support facilities less than 70,000 SF. The model is based on a 2 -story underground building with 40,000 square feet of floor area. The structure is Cast in Place structure. HVAC systems must be added by the user.	
		Perimeter (LF): 570	Location: National Average
		Gross Sqft: 40,000	Floor Height (LF): 10
		No of Floors: 2	
N76	Guard Shack Metal	This model should be applied to guard shacks made primarily of metal. The model is based upon a 1 -story building with 200 square feet of floor area. The structure is metal studs with metal panel walls and roof.	
		Perimeter (LF): 60	Location: National Average
		Gross Sqft: 200	Floor Height (LF): 8
		No of Floors: 1	
N77	Guard Shack Precast	This model should be applied to guard shacks made primarily of precast concrete. The model is basedupon a 1 -story building with 200 square feet of floor area. The structure is precast concrete wall panels and precast concrete roof panels.	
		Perimeter (LF): 60	Location: National Average
		Gross Sqft: 200	Floor Height (LF): 8
		No of Floors: 1	
N78	Shed 300SF Open	This model should be applied to storage sheds with open sides. The model is based upon a 1 story building with 300 square feet of floor area. The structure is tube steel columns and headers with metal roof panels on light gauge framing.	
		Perimeter (LF): 74	Location: National Average
		Gross Sqft: 300	Floor Height (LF): 8
		No of Floors: 1	
N79	Shed 300SF Open, Electricity	This model should be applied to storage sheds with open sides and electrical service. The model is based upon a 1 story building with 300 square feet of floor area. The structure is tube steel columns and headers with metal roof panels on light gauge framing.	
		Perimeter (LF): 74	Location: National Average
		Gross Sqft: 300	Floor Height (LF): 8
		No of Floors: 1	

Model No.	Model Name		scription
N85	Shed 840SF Enclosed, Electricity	This model should be applied to storage sheds with enclosed sides and electrical service. The model is based upon a 1 story building with 840 square feet of floor area. The structure is metal studs with metal panel walls and roof.	
		Perimeter (LF): 120	Location: National Average
		Gross Sqft: 840	Floor Height (LF): 8
		No of Floors: 1	
N86	Guard Tower Metal	This model should be applied to Guard Towers made primarily of metal. The model is based upon a structure that has 200 square feet of floor area. The structure is made of structural steelshapes and headers, with an enclosed space.	
		Perimeter (LF): 60	Location: National Average
		Gross Sqft: 200	Floor Height (LF): 8
		No of Floors: 1	
N87	Guard Tower Precast	This model should be applied to Guard Towers made primarily of precast concrete. The model is basedupon a structure that has 200 square feet of floor area. The structure is made of structuralsteel shapes and headers, with an enclosed precast space.	
		Perimeter (LF): 60	Location: National Average
		Gross Sqft: 200	Floor Height (LF): 8
		No of Floors: 1	
N88	High Security Nuclear Facility	This model should be applied to High Security Facilities. The model is based upon a 3 -story structure that has 92500 square feet of floor area. The structure is steel reinforced concrete with multiple exterior closure types.	
		Perimeter (LF): 702	Location: National Average
		Gross Sqft: 92500	Floor Height (LF): 12
		No of Floors: 3	

